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Minkowski's theory of moving media is extended hereby to the
anisotropic case. The corresponding Maxwell-Minkowski equations
havé been derived under the condition that the velocity of the moving
medium is small compared to the veiocity of light. The theory is
applied to derive the characteristic equation for the index of refrac-
tion in a drifting magneto-ionic 'medium. The result verifies the
previous one obtained by Epstein. Two different formulations based

upon the convection current model and the polarization model are dis-

cussed in detail from the pcint of view of the transform method. .
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Introduction:

The foundation of the electrodynamics of moving media was laid
by Minkowskil and based upon the special thecry of relativity, For a
moving isotropic medium, the complete treatment is given by Sommer-
feldz. When the velocity of the moving isotropic medium is small
compared to the velocity of light, the resultant wave equations can be
greatly simplifieds. Several techincal problems arising from these
wave equations have already been investigated4’ % 6 7.

In this report we shall present an extension of Minkowski's theory
to moving anisotropic media, the theory is finally applied to a drifting
magneto-ionic medium to determine the normal modes of plane waves
which can exist in such a medium. The characteristic equation for
the index of refraction so obtained by the first order relativistic trans-
form method is the same as the one previously derived by Epstein
using the EHPMv formulation, originally adopted by Unzg, and the
equation of motion of a bound electron in a drifting magneto-ionic medium.
Finally, the equivalence between the convection current model and the
polarization current model will be discussed frora the point of view of

the transform method,




First-order Relativistic Transformation of Field Vectors:

In this section, we shall first review the relativistic transformation
of the field vectors defined in Maxwell's equations as first recognized
by Einstein and later elaboratea by Minkowski. Two inertial systems
(x, vy, z) and (x', y', z',) are in relative motion. The primed system
is assumed to be moving with a velocity v with respect to the unprimed
system. The time variable in the two systems will be denoted, respec-
tively, by t and t'. Maxwell's equaticns and the equation of continuity

defined in the systems are:
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vx‘ﬁ-h’%:-’- (5)

V-3=-?§ (6)

If the velocity v is small compared to the velocity of light, the
first-order relativistic transformation between the two sets of field
vectors, resulting from neglecting terms of the order of (v/c )z, is

given by!?

D'=D+L vxm ()
o2

E'=E+VxB (8)

ié'=i§-l-z VxE (9)
[&]




He=H-vxD (10)
J'ed-pV : an
p'ap-l—Z ve3J (12)
c
where
& =1 A e (13)

If two material field vectors Pand M are used, such that one writes

D=c E+P (14)
o]
B= /4 (H+ M) (15)

and similarly for the primed quartities, then the first-crder relativistic

transformation of the material field vectors can be deduced from (7 - 10).
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They are .
§'=§-l?7xﬂ' (16)
c
M=M+vxP (1))

The First-order Constitution Relations between the Field Vectors defined

in the Unprimed System:

Let us assume that constitutive relations for an anisotropic medium

in the primed system are known. In the most general case, they are:

D'=€'- E! (18)

B'=A'" H' (19)

(20)
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where the sign ''=" is used to denste a dvadic. If the medium is disper-

sive, it is understocd that €' ,/-(' , and €' wouid be functions of the
frequency deiined in the primed system, which will be denoted by w'.

By substituting (7 - 11) into (18 - 20), we obtain

B+1—2 VxH=€ - (E+vx B (21)
c

e

B__E VXE=A'"*(H-vx D (22)
c

3—px7=5‘=”(173+x7x_5) (23)

Bv e¢liminating Dor Bfrom (21 - 22) and neglecting terms of the order

Z .
of (v/e)~, we have
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3:2‘- {‘;.+—v-x(;‘ﬁ)] +p-\7 (26)

Since V* D=p, {(26) may be writter in the form

Jec' - [f:ﬂ?xgﬁ' : m] +7y- €' D (27)

Again, terms of the order of (v/ c)Z have been neglected in deriving

(27). Equations (24), (25), and (27) contain the first-order constitu-
tive relations between the field quantities defined in the unprimed sys-
tem in terms of the contitutive parameters known or given in the primed
system. By substituting these equations into (4 - 5), we obtain the
Maxwell-Minkowski wave equations for the field vectors Eand Hin

a moving anisotropic medium which represent a normal extension

of Minkowski's theorv of moving media to the anisotropic case,

The Magneto-ionic Theory for Drifting Plasma:

In this section, we shall apply the above formulation to derive the
characteristic equation for the index of refraction for a plane wave
propagating in a drifting magneto-ionic mediwun. The convection cur-

rent model will be treated first. In such a2 model the plasma is assumed



to consist of free electrons with a drift velocity v. The primed system

is attached to the drifting electrons and the unprimed system is fixed

to an observer. - According to the well-known theory of stationary magneto-
ionic media, the relation between the convection current J and a har-

monically oscillating electire field E'with frequency w' can be written

in the form
- =E (28)
where the dyadic r'is given by
r=—d— l(1-jz)I+j¥% (29)
X'U'GO

mw' €
0

wp = plasma frequency,




w' = collision frequency,
c
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W gyromagnetic frequency.

The dyadic r'is clearly the reciprocal of € ' previously introduced

in (20), i.e.,
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(30)

In the convection current model, the medium is considered to be un-

polarized and unmagnetized, hence,




Equations (24), (25), and (27), therefore, reduce to
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(32)

(33)

(34)

(35)

On account of (33 - 34), (4 - 3) become, for a harmonically oscillating

field,

".7xE=—jw/«'ﬁ
N

AV x’ﬁ=3+jwfoi’

(36)

(37)




Equations (35 - 37) are the three basic equations relating I—~; B, and J
in a drifting magneto-ionic medium. They have been derived by apply-
ing Minkowski's first-order relativistic transform method. .

To derive the characteristic equation for the index of refraction,
let us assume a harmonically oscillating plane wave to be propagating
in the z-direction in the unprimed system so that all the field components
have a dependence of ej (Wt - kz). The wave number k, the index of

refraction n, the phase velocity Vp and the angular frequency w are

related as follows:

= D (38)

A a result of the assumption of a plane wave propagating in the z-direc-

tion, (36 - 37) can be written as

-jkz x E= -jwA H (39)

-jk2 x B=J+jwe E (40)
[0




Eliminating Hbetween (39) and (40), we obtain
- - A
J= -peo [(l - nz) E+ nZ Ez ZJ (41

Substituting the expressions for ﬁand_jas given by (39) and (41) into

(35), we obtain a homogeneous equation for E
= = 2K '
-, r' ﬁl—nz)l’:}*k(n 2 -n p) Ez] (42)
=E+n B X (2 X E

where

B = ;/c . (43)

To find the characterisiic equation for n, the primed quantities contained
'in r' must first be converted into explicit functions of n. Because of
the Doppler shift, the relaticnship between w' and w, accurate to the

order ¢f v/c, isgiven by




! = _B_
w' =w( hJvz)

(44)
= -n
=w(l - vz)
=w(l-n8)
z
The parameters contained in ;' , therefore, can be written as:
o 2 2
X' =(-B) =1l 5 (Z_'))D) = X (45)
1
w (1-n8) (- nﬁz)
Ye 1 Z
Z'=— = (:J-)-‘:) = = » (46)
w' 1 -nBz 1-nb,
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w' 1-n5 w 1-nj
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On account of (.48), the explicit expreesion for i42) is given by

-

= = —_ ALY Y
[(1 -8 - YAl +le- [(1 -2I)E+ @z - nB)EZ] 49)
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Equation (49) can be written in the form

A E=0 (50)
Where the element of the dyadic Z are found to be
2
A =@ -D(1-m8 -jZ)+(1-n8)X (5D
xx z z

A =-jn“-1DY
Xy z

A, =(-nB -z -joB Y -jll-nd)Y

2

= ;f - 1Y
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= (2 .
AYY =(n" - (1 -nBz -JjZ) + (1 -nBz)X

A =(-p8 -jZ)nf +inB Y +jl -nB)Y
yz z z X z z X

A =-i®-1DY +a8 X
zX y X

A =jm®-1BY +n8 X
zy x y

A =-(1-n8X1-n3-3iZ)-inf Y +jnB Y +X
zz z z Xy y x

Equation (50) is the same as the one previcusly ohtained by Epstein
after correcting the original work of Unzg. The zlternative deriva-
tion presented here appears to provide a better view as to how the
original Appleton-Hartree matrix was transformed as a result of the
motion., It also establishes a criterion that the characteristic equation
for n derivable from {59} is only acc<urate to the order of v/c. This
characteristic equat:on is, of course, obtained by letting the deter-
minent ¢f A ke equal to zero.

The Polarization Current Model;

11
In the book by Ratcliffe , the Appleton-Hartrec equation for a

Staticnary magneto-ionic mediurs was derived by ¢onsidering the medium
o -



to be made of polarized matter or bound electrons. We shall call such
a model ''the Polarization Current Model'' in contrast to the convection
current model presented in the previoue section. In the polarization

current model, one had

J'=0 {52)
M'=0 (53)
and P'= eb;." E' (54)

where, numerically, the dyadic susceptibility-)—f_' is related to 6 ' defined

by (30) in the following way

W'e % = (55)

Az a result of using f", (24 - 25) become

D=e"(E+/<OVxH) - ﬁzvx}l (56)

O
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B i [ﬁ-;xé'- 5}+szxn 57
where e=e( +2) (58)

Two alternative expressions for (56 - 57) are

D=¢€E+ 60;' * (E+ /4, vx H (59)

B= AH- AV x (e X' E) (60)
If we denote

eb;u- (E+ 4 vxH =P (61)
then D= €E+P (62)

B= s (H-vxP) (63)

Within the order of accuracy of v/c, the apparent difference between
{60) and {63! is of no consejquence. The basic equations involved in

the polarization current model are sunumarized below:




N s e

Vx?’i‘ﬂw/‘g)(l_i-;xi) (64)
VxH= j;.;(eoﬁi—?) (65)
P= €o7£ - (E +/lOV x H) (66)

These equations play a role similar to (35 - 37) in the convection current
model. As far as the result is concerned it will be shown that two
models do yield the same answer as far as the characteristic equa-

tion for n is concerned. Equations (64 - 66) may be transformed into

another form by introducing a field vector ﬁp defined by

Hp =R-vxP (67)
that gives v xE= -jg./moHp (68)
7 X T-&) =wle E4P) - Ux (Tx V) (69)
P=ec X (B+4VxH) (70)
0 <0 p

'

A term of the srder of (v/ ¢ is discarded in converting (66) into (70).




Equations (68) and (69) are ideatical in form to the two equations used
by Umz9 who originally investigated that problem based upon the so-
called EHPMv formulation. Equation (70) can be transformed to the

8
force equation interpreted by Epstein. Thus, if we write (70) in the

form
Wwp=F'- (E+/‘Ov b ¢ Hp) (71)
or w'r' - P=(E+/-(ovx Hp) (72)

=
Using r' given by (29) and subsatituting it into (72) we may reconstruct
the differential equation corresponding to (72). We consider

= {(l-jZ')I: +ﬂ={']- P=E+xvxH (73)
€ X' °© P
0o

which is the same as

> -

-mw' ' fe -

_Ew_.z. El-jwi) P+j£—ﬂ9—li’ XPJ=E+ /xR (74)
o

Niet w' miv'

f we let




P=-NeR (75)
P

then, (74) is equivalent to

’OZ- 3R 2R
_._2 trow, —L =~ e (B4 —~P xu /Y X )
’bt ' A3

(7€)
Since t' is defined in the primed system, the partial derivation of a func-
(i

. . ... d
tion with respect to t' is the same as the material derivative — = ;—
dt t

+ (v V) evalgated in the unprimed system as a result of the first-order '
Lorentz transformation, i.e., neglecting terms of the order of (v/c) .
Equation (76}, therefore, is identical to the force equation considered

by Epstein after re-interpreting the work of Unz. As we have mentioned
earlier, as far as the characteristic equation for n is concerned hoth

the cenvection —current model and the polarication model provide the

same answer. However, it is obvious from this discussion that there

are several delicate concepts involved in the polarization model. It ‘\

appears that these concepts and their acceptance can best be understood

and justified with the aid of Minkowski's theory.
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